Math 2FM3, Tutorial 5

Oct $12^{\text {th }}, 2015$

Increasing Annuities

- The payment series is $1,2,3,4, \ldots, n$ and each payment at the end of the time section.
- Present value for these payments is
$(l a)_{n \mid i}=v+2 v^{2}+3 v^{3}+\ldots+n v^{n}=\left(\ddot{a}_{n \mid i}-n v^{n}\right) / i$
when $n \rightarrow \infty,(l a)_{\infty \mid i}=1 /$ id (perpetuity)
- Accumulated value is
$(I s)_{n \mid i}=\left(s_{n \mid i}-n\right) / i$

Decreasing Annuity

- The payment series is $n, n-1, n-2, \ldots, 2,1$ at the end of each time section.
- Present Value:
$(D a)_{n \mid i}=n v+(n-1) v^{2}+(n-3) v^{3}+\ldots+v^{n}=\left(n-a_{n \mid i}\right) / i$
- Accumulated Value:
$(D s)_{n \mid i}=\left(n(1+i)^{n}-s_{n \mid i}\right) / i=(D a)_{n \mid i} \cdot(1+i)^{n}$

Ex 2.3.3

- Jeff and Jason spend X dollars each to purchase annuities. Jeff buys a perpetuityimmediate, which makes annual payments of 30. Jason buys a 10-year annuity-immediate, also with annual payments. The first payment is 53 , with each subsequent payment $\mathrm{k} \%$ larger than the previous year's payment. Both annuities use an effective annual interest rate of $\mathrm{k} \%$. Calculate k .

Ex 2.3.5

- A senior executive is offered a buyout package by his company that will pay him a monthly benefit for the next 20 years. Monthly benefits will remain constant within each of the 20 years. At the end of each 12month period, the monthly benefits will be adjusted upwards to reflect the percentage increase in the CPI. You are given:
- (i) The first monthly benefit is R and will be paid one month from today.
- (ii) The CPI increases 3.2% per year forever.
- At an effective annual interest rate of 6%, the buyout package has a value of 100,000. Calculate R.

Ex 2.3.18

- Joe can purchase one of two annuities:
- Annuity 1: A 10-year decreasing annuity-immediate, with annual payments of $10,9,8, \ldots, 1$
- Annuity 2: A perpetuity-immediate with annual payments. The perpetuity pays 1 in year 1, 2 in year 2, 3 in year $3, \ldots$ and 11 in year 11. After year 11, the payments remain constant at 11 .
- At an effective annual interest rate of i, the present value of Annuity 2 is twice the present value of Annuity 1. Calculate the value of Annuity 1.

